Abstract
Currently, the experimentally identified interactome of Arabidopsis (Arabidopsis thaliana) is still far from complete, suggesting that computational prediction methods can complement experimental techniques. Motivated by the prosperity and success of deep learning algorithms and natural language processing techniques, we introduce an integrative deep learning framework, DeepAraPPI, allowing us to predict protein-protein interactions (PPIs) of Arabidopsis utilizing sequence, domain and Gene Ontology (GO) information. Our current DeepAraPPI comprises (i) a word2vec encoding-based Siamese recurrent convolutional neural network (RCNN) model, (ii) a Domain2vec encoding-based multiple layer perceptron (MLP) model, and (iii) a GO2vec encoding-based MLP model. Finally, DeepAraPPI combines prediction results of the three individual predictors through a logistic regression model. Compiling high-quality positive and negative training and test samples by applying strict filtering strategies, DeepAraPPI shows superior performance compared to existing state-of-the-art Arabidopsis PPI prediction methods. DeepAraPPI also provides better cross-species predictive ability in rice (Oryza sativa) than traditional machine learning methods, although the overall performance in cross-species prediction remains to be improved. DeepAraPPI is freely accessible at http://zzdlab.com/deeparappi/. In the meantime, we have also made the source code and datasets of DeepAraPPI available at https://github.com/zjy1125/DeepAraPPI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.