Abstract
Traditional plenoptic wavefront sensors (PWFS) suffer from the obvious step change of the slope response, leading to poor wavefront detection performance. In order to solve this problem, in this paper, a deep learning model is proposed to restore phase maps directly from slope measurements of PWFS. Numerical simulations are employed to demonstrate our approach, and the statistical residual wavefront root mean square error (RMSE) of our method is 0.0810 ± 0.0258λ, which is much superior to those of modal algorithm (0.2511 ± 0.0587λ) and zonal approach (0.3584 ± 0.0487λ). The internal driving force of PWFS-ResUnet is investigated, and the slope response differences between sub-apertures and directions are considered as a probably key role to help our model to accurately restore the phase map. Additionally, the robustness of our model to turbulence strength and signal-to-noise ratio (SNR) level is also tested. The proposed method provides a new direction to solve the nonlinear problem of traditional PWFS.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.