Abstract

Reliable detection of defects from optical fringe patterns is a crucial problem in non-destructive optical interferometric metrology. In this work, we propose a deep-learning-based method for fringe pattern defect identification. By attributing the defect information to the fringe pattern's phase gradient, we compute the spatial phase derivatives using the deep learning model and apply the gradient map to localize the defect. The robustness of the proposed method is illustrated on multiple numerically synthesized fringe pattern defects at various noise levels. Further, the practical utility of the proposed method is substantiated for experimental defect identification in diffraction phase microscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.