Abstract
The large number of near-Earth asteroids (NEAs) has greatly impacted human space activities and Earth security. However, detecting NEAs in astronomical images with complex, varying backgrounds is still extremely challenging. In this paper, we propose a deep segmentation assisted asteroid tracking algorithm, termed DSAT, to construct a possible pipeline for faint NEA tracking in astronomical images. First, the single-frame object detection problem is converted to a segmentation problem, enabling robust extraction of faint potential moving objects. Then, a multiframe motion prior-based moving object tracking algorithm is proposed to find real NEAs. We further propose a distance tolerance criterion to help DSAT achieve effective tracking in practical situations when detection has partially failed. Finally, the pipeline is tested with both simulated and real astronomical images at different SNRs and in crowded fields. The results showed that our pipeline has the potential to detect and track faint NEAs in complex backgrounds. Our code is publicly available at https://github.com/zhenhongdu/DeepSegAsteroidTracker.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.