Abstract

Deep learning (DL) is a well-established pipeline for feature extraction in medical and nonmedical imaging tasks, such as object detection, segmentation, and classification. However, DL faces the issue of explainability, which prohibits reliable utilisation in everyday clinical practice. This study evaluates DL methods for their efficiency in revealing and suggesting potential image biomarkers. Eleven biomedical image datasets of various modalities are utilised, including SPECT, CT, photographs, microscopy, and X-ray. Seven state-of-the-art CNNs are employed and tuned to perform image classification in tasks. The main conclusion of the research is that DL reveals potential biomarkers in several cases, especially when the models are trained from scratch in domains where low-level features such as shapes and edges are not enough to make decisions. Furthermore, in some cases, device acquisition variations slightly affect the performance of DL models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.