Abstract

The phylogenetic interpretation of pollen morphology is limited by our inability to recognize the evolutionary history embedded in pollen features. Deep learning offers tools for connecting morphology to phylogeny. Using neural networks, we developed an explicitly phylogenetic toolkit for analyzing the overall shape, internal structure, and texture of a pollen grain. Our analysis pipeline determines whether testing specimens are from known species based on uncertainty estimates. Features from specimens with uncertain taxonomy are passed to a multilayer perceptron network trained to transform these features into predicted phylogenetic distances from known taxa. We used these predicted distances to place specimens in a phylogeny using Bayesian inference. We trained and evaluated our models using optical superresolution micrographs of 30 extant Podocarpus species. We then used trained models to place nine fossil Podocarpidites specimens within the phylogeny. In doing so, we demonstrate that the phylogenetic history encoded in pollen morphology can be recognized by neural networks and that deep-learned features can be used in phylogenetic placement. Our approach makes extinction and speciation events that would otherwise be masked by the limited taxonomic resolution of the fossil pollen record visible to palynological analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.