Abstract

BackgroundWearable devices have evolved as screening tools for atrial fibrillation (AF). A photoplethysmographic (PPG) AF detection algorithm was developed and applied to a convenient smartphone-based device with good accuracy. However, patients with paroxysmal AF frequently exhibit premature atrial complexes (PACs), which result in poor unmanned AF detection, mainly because of rule-based or handcrafted machine learning techniques that are limited in terms of diagnostic accuracy and reliability.ObjectiveThis study aimed to develop deep learning (DL) classifiers using PPG data to detect AF from the sinus rhythm (SR) in the presence of PACs after successful cardioversion.MethodsWe examined 75 patients with AF who underwent successful elective direct-current cardioversion (DCC). Electrocardiogram and pulse oximetry data over a 15-min period were obtained before and after DCC and labeled as AF or SR. A 1-dimensional convolutional neural network (1D-CNN) and recurrent neural network (RNN) were chosen as the 2 DL architectures. The PAC indicator estimated the burden of PACs on the PPG dataset. We defined a metric called the confidence level (CL) of AF or SR diagnosis and compared the CLs of true and false diagnoses. We also compared the diagnostic performance of 1D-CNN and RNN with previously developed AF detectors (support vector machine with root-mean-square of successive difference of RR intervals and Shannon entropy, autocorrelation, and ensemble by combining 2 previous methods) using 10 5-fold cross-validation processes.ResultsAmong the 14,298 training samples containing PPG data, 7157 samples were obtained during the post-DCC period. The PAC indicator estimated 29.79% (2132/7157) of post-DCC samples had PACs. The diagnostic accuracy of AF versus SR was 99.32% (70,925/71,410) versus 95.85% (68,602/71,570) in 1D-CNN and 98.27% (70,176/71,410) versus 96.04% (68,736/71,570) in RNN methods. The area under receiver operating characteristic curves of the 2 DL classifiers was 0.998 (95% CI 0.995-1.000) for 1D-CNN and 0.996 (95% CI 0.993-0.998) for RNN, which were significantly higher than other AF detectors (P<.001). If we assumed that the dataset could emulate a sufficient number of patients in training, both DL classifiers improved their diagnostic performances even further especially for the samples with a high burden of PACs. The average CLs for true versus false classification were 98.56% versus 78.75% for 1D-CNN and 98.37% versus 82.57% for RNN (P<.001 for all cases).ConclusionsNew DL classifiers could detect AF using PPG monitoring signals with high diagnostic accuracy even with frequent PACs and could outperform previously developed AF detectors. Although diagnostic performance decreased as the burden of PACs increased, performance improved when samples from more patients were trained. Moreover, the reliability of the diagnosis could be indicated by the CL. Wearable devices sensing PPG signals with DL classifiers should be validated as tools to screen for AF.

Highlights

  • BackgroundAtrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice [1]

  • The area under receiver operating characteristic curves of the 2 deep learning (DL) classifiers was 0.998 for 1-dimensional convolutional neural network (1D-CNN) and 0.996 for recurrent neural network (RNN), which were significantly higher than other atrial fibrillation (AF) detectors (P

  • We found that (1) both 1D-CNN and RNN showed high diagnostic performance (AUC=0.998 and 0.996 for 1D-CNN and RNN, respectively); (2) both DL-based algorithms showed a better diagnostic performance than previous well-known AF detection algorithms, even under a high premature atrial complexes (PACs) burden, and had the potential to improve as more samples were allowed to be trained; and (3) most diagnoses by the DL classifiers were confident and the respective calculated confidence level (CL) provided an interpreted reliability of the diagnosis

Read more

Summary

Introduction

BackgroundAtrial fibrillation (AF) is the most common cardiac arrhythmia in clinical practice [1]. Many patients with AF present paroxysmal symptoms or are asymptomatic; the limited accessibility of the ECG during the symptom could lower the detection rate of AF. It is important to detect AF regardless of symptoms because asymptomatic patients with AF could present with stroke at their first manifestation [4]. It is important to detect AF in a potentially high-risk population who might benefit from stroke prevention with adequate anticoagulation control [6,7,8,9]. Wearable devices have evolved as screening tools for atrial fibrillation (AF). Patients with paroxysmal AF frequently exhibit premature atrial complexes (PACs), which result in poor unmanned AF detection, mainly because of rule-based or handcrafted machine learning techniques that are limited in terms of diagnostic accuracy and reliability

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call