Abstract

Detecting deepfake images using a deep learning approach, particularly using model Densenet121, involves training a neural network to differentiate between authentic and manipulated images. Deepfakes have gained prominence due to advances in deep learning, especially generative adversarial networks (GANs). They pose significant challenges to the veracity of digital content, as they can be used to create realistic and deceptive media. Deepfakes are realistic looking fake media generated by many artificial intelligence tools like face2face and deepfake, which pose a severe threat to public. As more deepfakes are spreading, we really need better ways to find and prevent them. Deepfake involves creation of highly realistic images and videos and misuse them for spreading fake news, defaming individuals, and possess a significant threat to the integrity of digital content. Our project “Deep Learning Approaches for Robust Deep Fake Detection” aims to address this critical issue by developing a robust system for identification and localization of deep fake content by using ‘Densenet121’ model. This proposed framework seamlessly integrates forgery detection and localization. The dataset used in this project is “140k Real and Fake Faces”, and it consists of 70k real faces from Flickr dataset collected by Nvidia and 70k fake faces sampled from the 1 million Fake faces generated by StyleGAN. For localization purpose, we use GRAD-CAM method to accurately identify the morphed regions. Overall, our goal is to make deepfake detection more effective and reliable in today’s digital landscape.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call