Abstract

The quantification of absorbed light is essential for understanding laser-material interactions and melt pool dynamics in order to minimize defects in additively manufactured metal components. The geometry of a vapor depression formed during laser melting is closely related to laser energy absorption. This relationship has been observed by the state-of-the-art in situ high-speed synchrotron X-ray visualization and integrating sphere radiometry. These two techniques create a temporally resolved dataset consisting of vapor depression images and corresponding laser absorptance. In this work, we propose two different approaches to predict instantaneous laser absorptance. The end-to-end approach uses deep convolutional neural networks to learn implicit features of X-ray images automatically and predict the laser energy absorptance. The two-stage approach uses a semantic segmentation model to engineer geometric features and predict absorptance using classical regression models. While having distinct advantages, both approaches achieved a consistently low mean absolute error of less than 3.3%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.