Abstract

AimSentinel lymph node status is a central prognostic factor for melanomas. However, the surgical excision involves some risks for affected patients. In this study, we therefore aimed to develop a digital biomarker that can predict lymph node metastasis non-invasively from digitised H&E slides of primary melanoma tumours. MethodsA total of 415 H&E slides from primary melanoma tumours with known sentinel node (SN) status from three German university hospitals and one private pathological practice were digitised (150 SN positive/265 SN negative). Two hundred ninety-one slides were used to train artificial neural networks (ANNs). The remaining 124 slides were used to test the ability of the ANNs to predict sentinel status. ANNs were trained and/or tested on data sets that were matched or not matched between SN-positive and SN-negative cases for patient age, ulceration, and tumour thickness, factors that are known to correlate with lymph node status. ResultsThe best accuracy was achieved by an ANN that was trained and tested on unmatched cases (61.8% ± 0.2%) area under the receiver operating characteristic (AUROC). In contrast, ANNs that were trained and/or tested on matched cases achieved (55.0% ± 3.5%) AUROC or less. ConclusionOur results indicate that the image classifier can predict lymph node status to some, albeit so far not clinically relevant, extent. It may do so by mostly detecting equivalents of factors on histological slides that are already known to correlate with lymph node status. Our results provide a basis for future research with larger data cohorts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.