Abstract

Childhood glaucoma is one of the major causes of blindness in children, however, its diagnosis is of great challenge. The study aimed to demonstrate and evaluate the performance of a deep-learning (DL) model for detecting childhood glaucoma based on periocular photographs. Primary gaze photographs of children diagnosed with glaucoma with appearance features (corneal opacity, corneal enlargement, and/or globe enlargement) were retrospectively collected from the database of a single referral center. DL framework with the RepVGG architecture was used to automatically recognize childhood glaucoma from photographs. The average receiver operating characteristic curve (AUC) of fivefold cross-validation was 0.91. When the fivefold result was assembled, the DL model achieved an AUC of 0.95 with a sensitivity of 0.85 and specificity of 0.94. The DL model showed comparable accuracy to the pediatric ophthalmologists and glaucoma specialists in diagnosing childhood glaucoma (0.90 vs 0.81, p = 0.22, chi-square test), outperforming the average of human examiners in the detection rate of childhood glaucoma in cases without corneal opacity (72% vs. 34%, p = 0.038, chi-square test), with a bilateral corneal enlargement (100% vs. 67%, p = 0.03), and without skin lesions (87% vs. 64%, p = 0.02). Hence, this DL model is a promising tool for diagnosing missed childhood glaucoma cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call