Abstract
Wildfires cause severe consequences, including property loss, threats to human life, damage to natural resources, biodiversity, and economic impacts. Consequently, numerous wildland fire detection systems were developed over the years to identify fires at an early stage and prevent their damage to both the environment and human lives. Recently, deep learning methods were employed for recognizing wildfires, showing interesting results. However, numerous challenges are still present, including background complexity and small wildfire and smoke areas. To address these challenging limitations, two deep learning models, namely CT-Fire and DC-Fire, were adopted to recognize wildfires using both visible and infrared aerial images. Infrared images detect temperature gradients, showing areas of high heat and indicating active flames. RGB images provide the visual context to identify smoke and forest fires. Using both visible and infrared images provides a diversified data for learning deep learning models. The diverse characteristics of wildfires and smoke enable these models to learn a complete visual representation of wildland fires and smoke scenarios. Testing results showed that CT-Fire and DC-Fire achieved higher performance compared to baseline wildfire recognition methods using a large dataset, which includes RGB and infrared aerial images. CT-Fire and DC-Fire also showed the reliability of deep learning models in identifying and recognizing patterns and features related to wildland smoke and fires and surpassing challenges, including background complexity, which can include vegetation, weather conditions, and diverse terrain, detecting small wildfire areas, and wildland fires and smoke variety in terms of size, intensity, and shape. CT-Fire and DC-Fire also reached faster processing speeds, enabling their use for early detection of smoke and forest fires in both night and day conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.