Abstract

Protruding impact peak is one of the features of vertical ground reaction force (GRF) that is related to injury risk while running. The present research is dedicated to predicting GRF impact peak appearance by setting a binary classification problem. Kinematic data, namely a number of raw signals in the sagittal plane, collected by the Vicon motion capture system (Oxford Metrics Group, UK) were employed as predictors. Therefore, the input data for the predictive model are presented as a multi-channel time series. Deep learning techniques, namely five convolutional neural network (CNN) models were applied to the binary classification analysis, based on a Multi-Layer Perceptron (MLP) classifier, support vector machine (SVM), logistic regression, k-nearest neighbors (kNN), and random forest algorithms. SVM, logistic regression, and random forest classifiers demonstrated performances that do not statistically significantly differ. The best classification accuracy achieved is 81.09% ± 2.58%. Due to good performance of the models, this study serves as groundwork for further application of deep learning approaches to predicting kinetic information based on this kind of input data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.