Abstract
Robotic-assisted total knee arthroplasty (TKA) was performed to promote the accuracy of bone resection and mechanical alignment. Among these TKA system procedures, 3D reconstruction of CT data of lower limbs consumes significant manpower. Artificial intelligence (AI) algorithms applying deep learning has been proved efficient in automated identification and visual processing. CT data of a total of 200 lower limbs scanning were used for AI-based 3D model construction and CT data of 20 lower limbs scanning were utilised for verification. We showed that the performance of an AI-guided 3D reconstruction of CT data of lower limbs for robotic-assisted TKA was similar to that of the operator-based approach. The time of 3D lower limb model construction using AI was 4.7min. AI-based 3D models can be used for surgical planning. AI was used for the first time to guide the 3D reconstruction of CT data of lower limbs for facilitating robotic-assisted TKA. Incorporation of AI in 3D model reconstruction before TKA might reduce the workload of radiologists.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Medical Robotics and Computer Assisted Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.