Abstract

Retinal hemorrhages in pediatric patients can be a diagnostic challenge for ophthalmologists. These hemorrhages can occur due to various underlying etiologies, including abusive head trauma, accidental trauma, and medical conditions. Accurate identification of the etiology is crucial for appropriate management and legal considerations. In recent years, deep learning techniques have shown promise in assisting healthcare professionals in making more accurate and timely diagnosis of a variety of disorders. We explore the potential of deep learning approaches for differentiating etiologies of pediatric retinal hemorrhages. Our study, which spanned multiple centers, analyzed 898 images, resulting in a final dataset of 597 retinal hemorrhage fundus photos categorized into medical (49.9%) and trauma (50.1%) etiologies. Deep learning models, specifically those based on ResNet and transformer architectures, were applied; FastViT-SA12, a hybrid transformer model, achieved the highest accuracy (90.55%) and area under the receiver operating characteristic curve (AUC) of 90.55%, while ResNet18 secured the highest sensitivity value (96.77%) on an independent test dataset. The study highlighted areas for optimization in artificial intelligence (AI) models specifically for pediatric retinal hemorrhages. While AI proves valuable in diagnosing these hemorrhages, the expertise of medical professionals remains irreplaceable. Collaborative efforts between AI specialists and pediatric ophthalmologists are crucial to fully harness AI's potential in diagnosing etiologies of pediatric retinal hemorrhages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call