Abstract
Maintenance on flat roofs is a complex activity. Equipment improperly positioned on flat roofs hinders the correct drainage of water and makes maintenance services more difficult. This article presents an experiment with deep learning algorithms involving 330 images acquired in 9 buildings by Unmanned Aerial Vehicle-UAV. This dataset was created by the authors to optimize decision-making for maintenance through automated processes and is being used for the first time in this article. The dataset refers to condenser equipment positioned on flat roofs and was tested in six state-of-the-art object-detection deep learning algorithms: Region-based convolutional neural networks (Faster R-CNN), Focal Loss (Retina-Net), Adaptive Training Sample Selection (ATSS), VarifocalNet (Vfnet), Side-Aware Boundary Localization (SABL) and FoveaBox (Fovea). Nine performance metrics were applied, achieving successful results by Faster R-CNN (Recall=0.93, Fscore=0.93, MAE=0.43) followed by ATSS (Precision=0.95). In a system with many variables, the target is the identification of the best algorithm capable of solving the proposed problem. In conclusion, the types of errors analyzed in detection alert to the diversity of causes related to the inherent characteristics of flat roofs that induce network confusion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.