Abstract

The presence of nonlinearities such as hysteresis and creep increases the difficulty in the dynamic modeling and control of piezoelectric micromanipulators, in spite of the fact that the application of such devices requires high accuracy. Moreover, sensing in the microscale is expensive, making model feedback the only viable option. On the other hand, data-driven dynamic models are powerful tools within system identification that may be employed to construct models for a given plant. Recently, considerable effort has been devoted in extending the huge success of deep learning models to the identification of dynamic systems. In the present paper, we present the results of the successful application of deep learning based black-box models for characterizing the dynamic behavior of micromanipulators. The excitation signal is a multisine spanning the frequency band of interest and the selected model is validated with semi static individual sinusoidal curves. Various architectures are tested to achieve a reasonable result and we try to summarize the best approach for the fine tuning required for such application. The results indicate the usefulness and predictive power for deep learning based models in the field of system identification and in particular hysteresis modeling and compensation in micromanipulation applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.