Abstract

Age-related macular degeneration (AMD) is one of the leading causes of blindness in the elderly, more commonly in developed countries. Optical coherence tomography (OCT) is a non-invasive imaging device widely used for the diagnosis and management of AMD. Deep learning (DL) uses multilayered artificial neural networks (NN) for feature extraction, and is the cutting-edge technique for medical image analysis for diagnostic and prognostication purposes. Application of DL models to OCT image analysis has garnered significant interest in recent years. In this review, we aimed to summarize studies focusing on DL models used in classification and detection of AMD. Additionally, we provide a brief introduction to other DL applications in AMD, such as segmentation, prediction/prognostication, and models trained on multimodal imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call