Abstract

Real-time, radar-based human activity and target classification is useful for wide-area ground surveillance. However, the feasibility of deploying deep learning (DL) models in radar-based systems with limited computational resources remains unexplored. This paper investigated the effect of quantization on model throughput and accuracy for deployment in radar systems. A seven-layer residual network was proposed to classify ground-moving targets and achieved a test accuracy of 87.72%. The model was then quantized to 16-bit and 8-bit precision, resulting in a 3.8 times speedup in inference throughput, with less than a 0.4% drop in test and validation accuracy. The results showed that quantization can improve inference throughput with a negligible decrease in target classification accuracy. The increase in throughput and reduction in computational expense that comes with quantization promotes the feasibility of the deployment of DL models in systems with limited computational resources. The findings of this paper hold significant promise for the successful use of quantized models in modern radar systems, while adhering to stringent size, weight and power consumption constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.