Abstract

AbstractTo propose and implement an automated machine learning (ML) based methodology to predict the overall survival of glioblastoma multiforme (GBM) patients. In the proposed methodology, we used deep learning (DL) based 3D U‐shaped Convolutional Neural Network inspired encoder‐decoder architecture to segment the brain tumor. Further, feature extraction was performed on these segmented and raw magnetic resonance imaging (MRI) scans using a pre‐trained 2D residual neural network. The dimension‐reduced principal components were integrated with clinical data and the handcrafted features of tumor subregions to compare the performance of regression‐based automated ML techniques. Through the proposed methodology, we achieved the mean squared error (MSE) of 87 067.328, median squared error of 30 915.66, and a SpearmanR correlation of 0.326 for survival prediction (SP) with the validation set of Multimodal Brain Tumor Segmentation 2020 dataset. These results made the MSE far better than the existing automated techniques for the same patients. Automated SP of GBM patients is a crucial topic with its relevance in clinical use. The results proved that DL‐based feature extraction using 2D pre‐trained networks is better than many heavily trained 3D and 2D prediction models from scratch. The ensembled approach has produced better results than single models. The most crucial feature affecting GBM patients' survival is the patient's age, as per the feature importance plots presented in this work. The most critical MRI modality for SP of GBM patients is the T2 fluid attenuated inversion recovery, as evident from the feature importance plots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.