Abstract
ObjectivesTo evaluate the added value of deep learning (DL) analysis of the left ventricular myocardium (LVM) in resting coronary CT angiography (CCTA) over determination of coronary degree of stenosis (DS), for identification of patients with functionally significant coronary artery stenosis.MethodsPatients who underwent CCTA prior to an invasive fractional flow reserve (FFR) measurement were retrospectively selected. Highest DS from CCTA was used to classify patients as having non-significant (≤ 24% DS), intermediate (25–69% DS), or significant stenosis (≥ 70% DS). Patients with intermediate stenosis were referred for fully automatic DL analysis of the LVM. The DL algorithm characterized the LVM, and likely encoded information regarding shape, texture, contrast enhancement, and more. Based on these encodings, features were extracted and patients classified as having a non-significant or significant stenosis. Diagnostic performance of the combined method was evaluated and compared to DS evaluation only. Functionally significant stenosis was defined as FFR ≤ 0.8 or presence of angiographic high-grade stenosis (≥ 90% DS).ResultsThe final study population consisted of 126 patients (77% male, 59 ± 9 years). Eighty-one patients (64%) had a functionally significant stenosis. The proposed method resulted in improved discrimination (AUC = 0.76) compared to classification based on DS only (AUC = 0.68). Sensitivity and specificity were 92.6% and 31.1% for DS only (≥ 50% indicating functionally significant stenosis), and 84.6% and 48.4% for the proposed method.ConclusionThe combination of DS with DL analysis of the LVM in intermediate-degree coronary stenosis may result in improved diagnostic performance for identification of patients with functionally significant coronary artery stenosis.Key Points• Assessment of degree of coronary stenosis on CCTA has consistently high sensitivity and negative predictive value, but has limited specificity for identifying the functional significance of a stenosis.• Deep learning algorithms are able to learn complex patterns and relationships directly from the images without prior specification of which image features represent presence of disease, and thereby may be more sensitive to subtle changes in the LVM caused by functionally significant stenosis.• Addition of deep learning analysis of the left ventricular myocardium to the evaluation of degree of coronary artery stenosis improves diagnostic performance and increases specificity of resting CCTA. This could potentially decrease the number of patients undergoing invasive coronary angiography.
Highlights
Assessment of degree of stenosis (DS) in coronary arteries using coronary computed tomography angiography (CCTA) is an accepted diagnostic tool for the detection and exclusion of coronary artery disease (CAD), with consistently high sensitivity and negative predictive value [1,2,3]
Deep learning algorithms are able to learn complex patterns and relationships directly from the images without prior specification of which image features represent presence of disease, and thereby may be more sensitive to subtle changes in the left ventricular myocardium (LVM) caused by functionally significant stenosis
Addition of deep learning analysis of the left ventricular myocardium to the evaluation of degree of coronary artery stenosis improves diagnostic performance and increases specificity of resting CCTA. This could potentially decrease the number of patients undergoing invasive coronary angiography
Summary
Assessment of degree of stenosis (DS) in coronary arteries using coronary computed tomography angiography (CCTA) is an accepted diagnostic tool for the detection and exclusion of coronary artery disease (CAD), with consistently high sensitivity and negative predictive value [1,2,3]. Even though it is well known that perfusion defects are more pronounced under conditions of hyperemia [17, 18], prior studies have shown the feasibility and accuracy of identification of patients with a functionally significant coronary artery stenosis with resting CCTA only [8,9,10,11,12,13]. With these approaches, functional information is obtained without the need for an additional stress perfusion acquisition, thereby saving radiation and contrast medium dose, lowering risk, and reducing examination duration and cost. Approaches exploiting machine learning have been proposed in which the left ventricular myocardium (LVM) in resting CCTA is analyzed and used to classify patients with regard to the presence of functionally significant coronary artery stenosis [8, 9, 13]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.