Abstract

AbstractBy recognizing the motion of the healthy side, the lower limb exoskeleton robot can provide therapy to the affected side of stroke patients. To improve the accuracy of motion intention recognition based on sensor data, the research based on deep learning was carried out. Eighty healthy subjects performed gait experiments under five different gait environments (flat ground, 10 ${}^\circ$ upslope and downslope, and upstairs and downstairs) by simulating stroke patients. To facilitate the training and classification of the neural network, this paper presents template processing schemes to adapt to different data formats. The novel algorithm model of a hybrid network model based on convolutional neural network (CNN) and Long–short-term memory (LSTM) model is constructed. To mitigate the data-sparse problem, a spatial–temporal-embedded LSTM model (SQLSTM) combining spatial–temporal influence with the LSTM model is proposed. The proposed CNN-SQLSTM model is evaluated on a real trajectory dataset, and the results demonstrate the effectiveness of the proposed model. The proposed method will be used to guide the control strategy design of robot system for active rehabilitation training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.