Abstract

In order to improve the detection and identification ability of sports injury ultrasound medicine, a segmentation method of sports injury ultrasound medical image based on local features is proposed, and the research on the sports injury ultrasound medical detection and identification ability is carried out. Methods of the sports injury ultrasound medical image segmentation model are established; the sports injury ultrasound medical image information is enhanced by using the sports skeletal muscle block matching technology; the image features are extracted; and the characteristics of sports injury ultrasound medical images are analyzed by CT bright spot feature transmission. In detail, combined with the deep convolutional neural network training method, the extracted sports injury points are automatically detected for sports injury ultrasound medical images, and the sports injury ultrasound medical image segmentation is realized. The simulation results show that this method has high accuracy for sports injury ultrasound medical image segmentation, the error value can be controlled below 0.103, and finally, the effect of zero error is achieved. It is confirmed that the method proposed in this paper has high resolution and accuracy for sports injury point detection and has strong practical application ability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.