Abstract

While American Thoracic Society (ATS)/European Respiratory Society (ERS) quality control criteria for spirometry include several quantitative limits, it also requires manual visual inspection. The current approach is time consuming and leads to high intertechnician variability. We propose a deep-learning approach called convolutional neural network (CNN), to standardise spirometric manoeuvre acceptability and usability. In 36 873 curves from the National Health and Nutritional Examination Survey USA 2011-2012, technicians labelled 54% of curves as meeting ATS/ERS 2005 acceptability criteria with satisfactory start and end of test, but identified 93% of curves with a usable forced expiratory volume in 1 s. We processed raw data into images of maximal expiratory flow-volume curve (MEFVC), calculated ATS/ERS quantifiable criteria and developed CNNs to determine manoeuvre acceptability and usability on 90% of the curves. The models were tested on the remaining 10% of curves. We calculated Shapley values to interpret the models. In the test set (n=3738), CNN showed an accuracy of 87% for acceptability and 92% for usability, with the latter demonstrating a high sensitivity (92%) and specificity (96%). They were significantly superior (p<0.0001) to ATS/ERS quantifiable rule-based models. Shapley interpretation revealed MEFVC<1 s (MEFVC pattern within first second of exhalation) and plateau in volume-time were most important in determining acceptability, while MEFVC<1 s entirely determined usability. The CNNs identified relevant attributes in spirometric curves to standardise ATS/ERS manoeuvre acceptability and usability recommendations, and further provides individual manoeuvre feedback. Our algorithm combines the visual experience of skilled technicians and ATS/ERS quantitative rules in automating the critical phase of spirometry quality control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.