Abstract
Agile and reliable alignment of transceiver beams is crucial to support high transmission rate in millimeter-wave (mmWave) communications. In this letter, a deep learning aided two-stage multi-finger beam training (DL-TSMBT) algorithm is proposed for beam alignment purpose. In the first stage, a multi-finger beam based coarse scanning strategy is proposed to take a limited number of initial measurements, which are then fed into a customized convolutional neural network for feature extraction and candidate beam selection. In the second stage, the candidate beams are further trained to refine the beam selection. Numerical results validate the effectiveness of the DL-TSMBT proposed and show that DL-TSMBT outperforms several state-of-the-art traditional beam training baselines and a data-driven wide-beam training baseline, both in terms of misalignment probability and achievable spectrum efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.