Abstract
A synthetic air data system (SADS) is an analytical redundancy technique that is crucial for unmanned aerial vehicles (UAVs) and is used as a backup system during air data sensor failures. Unfortunately, the existing state-of-the-art approaches for SADS require GPS signals or high-fidelity dynamic UAV models. To address this problem, a novel synthetic airspeed estimation method that leverages deep learning and an unscented Kalman filter (UKF) for analytical redundancy is proposed. Our novel fusion-based method only requires an inertial measurement unit (IMU), elevator control input, and airflow angles while GPS, lift/drag coefficients, and complex aircraft dynamic models are not required. Additionally, we demonstrate that our proposed temporal convolutional network (TCN) is a more efficient model for airspeed estimation than the renowned models, such as ResNet or bidirectional long short-term memory (LSTM). Our deep learning-aided UKF was experimentally verified on long-duration real flight data and has promising performance compared with the state-of-the-art methods. In particular, it is confirmed that our proposed method robustly estimates the airspeed even under dynamic flight conditions where the performance of conventional methods is degraded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.