Abstract

Percutaneous renal access is the critical initial step in many medical settings. In order to obtain the best surgical outcome with minimum patient morbidity, an improved method for access to the renal calyx is needed. In our study, we built a forward-view optical coherence tomography (OCT) endoscopic system for percutaneous nephrostomy (PCN) guidance. Porcine kidneys were imaged in our experiment to demonstrate the feasibility of the imaging system. Three tissue types of porcine kidneys (renal cortex, medulla, and calyx) can be clearly distinguished due to the morphological and tissue differences from the OCT endoscopic images. To further improve the guidance efficacy and reduce the learning burden of the clinical doctors, a deep-learning-based computer aided diagnosis platform was developed to automatically classify the OCT images by the renal tissue types. Convolutional neural networks (CNN) were developed with labeled OCT images based on the ResNet34, MobileNetv2 and ResNet50 architectures. Nested cross-validation and testing was used to benchmark the classification performance with uncertainty quantification over 10 kidneys, which demonstrated robust performance over substantial biological variability among kidneys. ResNet50-based CNN models achieved an average classification accuracy of 82.6%±3.0%. The classification precisions were 79%±4% for cortex, 85%±6% for medulla, and 91%±5% for calyx and the classification recalls were 68%±11% for cortex, 91%±4% for medulla, and 89%±3% for calyx. Interpretation of the CNN predictions showed the discriminative characteristics in the OCT images of the three renal tissue types. The results validated the technical feasibility of using this novel imaging platform to automatically recognize the images of renal tissue structures ahead of the PCN needle in PCN surgery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.