Abstract

Simulating complex soft tissue deformations has been an intense research area in the fields of computer graphics or computational physiology for instance. A desired property is the ability to perform fast, if not real-time, simulations while being physically accurate. Numerical schemes have been explored to speed up finite element methods, like the Total Lagrangian Explicit Dynamics (TLED). However, real-time applications still come at the price of accuracy and fidelity. In this work, we explore the use of neural networks as function approximators to accelerate the time integration of TLED, while being generic enough to handle various geometries, motion and materials without having to retrain the neural network model. The method is evaluated on a set of experiment, showing promising accuracy at time steps up to 20 times larger than the “breaking” time step, as well as in a simple medical application. Such an approach could pave the way to very fast but accurate acceleration strategies for computational biomechanics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.