Abstract
ObjectivesTo investigate the clinical feasibility and image quality of accelerated brain diffusion-weighted imaging (DL-DWI) with deep learning image reconstruction and super resolution. MethodsEighty-five consecutive patients with clinically indicated MRI at a 3T scanner were prospectively included. Conventional diffusion-weighted data (c-DWI) with four averages were obtained. Reconstructions of one and two averages, as well as DL-DWI, were accomplished. Three experienced readers evaluated the acquired data using a 5-point Likert scale regarding overall image quality, overall contrast, diagnostic confidence, occurrence of artefacts and evaluation of the central region, basal ganglia, brainstem, and cerebellum. To assess interrater agreement, Fleiss’ kappa (ϰ) was determined. Signal intensity (SI) levels for basal ganglia and the central region were estimated via automated segmentation, and SI values of detected pathologies were measured. ResultsIntracranial pathologies were identified in thirty-five patients. DL-DWI was significantly superior for all defined parameters, independently from applied averages (p-value <0.001). Optimum image quality was achieved with DL-DWI by utilizing a single average (p-value <0.001), demonstrating very good (80.9%) to excellent image quality (14.5%) in nearly all cases, compared to 12.5% with very good and 0% with excellent image quality for c-MRI (p-value <0.001). Comparable results could be shown for diagnostic confidence. Inter-rater Fleiss' Kappa demonstrated moderate to substantial agreement for virtually all defined parameters, with good accordance, particularly for the assessment of pathologies (p=0.74). Regarding SI values, no significant difference was found. ConclusionUltra-fast diffusion-weighted imaging with super resolution is feasible, resulting in highly accelerated brain imaging while increasing diagnostic image quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.