Abstract
• A modified mask RCNN named Deep Leaf is developed to identify the leaves from the digitized herbarium specimens. • Deep Leaf measures automatically the morphological traits of the extracted leaves. • Deep features are extracted through an improved ResNet50/101, which is chosen as the backbone network of the feature extraction. • We achieved better performance compared with the original mask RCNN algorithm for leaves detection. The generation of morphological traits of plants such as the leaf length, width, perimeter, area, and petiole length are fundamental features of herbarium specimens, thus providing high-quality data to investigate plant responses to ongoing climatic change and plant history evolution. However, the existing measurement methods are primarily associated with manual analysis, which is labor-intensive and inefficient. This paper proposes a deep learning-based approach, called Deep Leaf, for detecting and pixel-wise segmentation of leaves based on the improved state-of-the-art instance segmentation approach, Mask Region Convolutional Neural Network (Mask R-CNN). Deep Leaf can accurately detect each leaf in the herbarium specimen and measure the associated morphological traits. The experimental results indicate that our automated approach can segment the leaves of different families. Compared to manual measurement done by ecologist and botanist experts, the average relative error of leaf length is 4.6%, while the average relative error of leaf width is 5.7%.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.