Abstract

Accurate identification for the information flow between epileptic seizure signals is the key to construct the directional epileptic brain network which can be used to localize epileptic focus. In this paper, our concern is on how to improve the direction identification of information flow and also investigate how it can be cut off or weakened. In view of this, we propose the deep-layer motif method. Based on the directional index (DI) estimation using permutation conditional mutual information, the effectiveness of the proposed deep-layer motif method is numerically assessed with the coupled mass neural model. Furthermore, we investigate the robustness of this method in considering the interference of autaptic coupling, time delay and short-term plasticity. Results show that compared to the simple 1-layer motif method, the 2nd- and 3rd-layer motif methods have the dominant enhancement effects for the direction identification. In particular, deep-layer motif method possesses good anti-jamming performance and good robustness in calculating DI. In addition, we investigate the effect of deep brain stimulation (DBS) on the information flow. It is found that this deep-layer motif method is still superior to the single-layer motif method in direction identification and is robust to weak DBS. However, the high-frequency strong DBS can effectively decrease the DI suggesting the weakened information flow. These results may give new insights into the seizure detection and control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.