Abstract
The goal of aspect-level sentiment analysis is to identify the sentiment polarity of a specific opinion target expressed; it is a fine-grained sentiment analysis task. Most of the existing works study how to better use the target information to model the sentence without using the interactive information between the sentence and target. In this article, we argue that the prediction of aspect-level sentiment polarity depends on both context and target. First, we propose a new model based on LSTM and the attention mechanism to predict the sentiment of each target in the review, the matrix-interactive attention network (M-IAN) that models target and context, respectively. M-IAN use an attention matrix to learn the interactive attention of context and target and generates the final representations of target and context. Then we introduce two gate networks based on M-IAN to build a deep interactive memory network to capture multiple interactions of target and context. The deep interactive memory network can excellently formulate specific memory for different targets, which is helpful in sentiment analysis. The experimental results of Restaurant and Laptop datasets of SemEval 2014 validate the effectiveness of our model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Asian and Low-Resource Language Information Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.