Abstract

In this paper, we propose a Deep Imitative Q-learning (DIQL) method to synthesize control policies for mobile robots that need to satisfy Linear Temporal Logic (LTL) specifications using noisy semantic observations of their surroundings. The robot sensing error is modeled using probabilistic labels defined over the states of a Labeled Transition System (LTS) and the robot mobility is modeled using a Labeled Markov Decision Process (LMDP) with unknown transition probabilities. We use existing product-based model checkers (PMCs) as experts to guide the Q-learning algorithm to convergence. To the best of our knowledge, this is the first approach that models noise in semantic observations using probabilistic labeling functions and employs existing model checkers to provide suboptimal instructions to the Q-learning agent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.