Abstract

In agriculture, aquaculture technologies such as precise feeding, fish identification and fishing based on underwater machine vision all rely on the analysis of underwater images. However, due to the scatting and attenuation of the illumination in the real-world underwater environment, turbid underwater images are inevitably degraded, limiting their applicability in many vision tasks. In this paper, we present an unsupervised deep learning framework, called Underwater Loop Enhancement Network (ULENet), to improve the quality of turbid underwater images. We first propose an underwater dataset construction scheme and construct the dataset on which the network proposed above is trained. The underwater dataset contains images of three different scenes: lake and reservoir scene data (no label), pool scene data (weakly correlated label), and laboratory scene data (strongly correlated label). Then we propose a loop enhancement structure that uses the approximate candidates as labels and improves the visual quality of the image through the iterative training process. We formulate a new underwater visual perception loss function that evaluates the perceptual image quality based on its color, contrast, saturation and clarity. During the training process, a more realistic, higher-contrast, and clearer underwater image is gradually generated. Qualitative and quantitative evaluations show that the proposed method can effectively enhance image clarity. Moreover, the enhanced images are applied to several vision tasks to achieve better results, such as edge detection, key point matching, fish target detection and saliency prediction etc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.