Abstract

Image registration is a basic task in computer vision, for its wide potential applications in image stitching, stereo vision, motion estimation, and etc. Most current methods achieve image registration by estimating a global homography matrix between candidate images with point-feature-based matching or direct prediction. However, as real-world 3D scenes have point-variant photograph distances (depth), a unified homography matrix is not sufficient to depict the specific pixel-wise relations between two images. Some researchers try to alleviate this problem by predicting multiple homography matrixes for different patches or segmentation areas in images; in this letter, we tackle this problem with further refinement, i.e. matching images with pixel-wise, depth-aware homography estimation. Firstly, we construct an efficient convolutional network, the <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DPH-Net</i> , to predict the essential parameters causing image deviation, the rotation ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$R$</tex-math></inline-formula> ) and translation ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$T$</tex-math></inline-formula> ) of cameras. Then, we feed-in an image depth map for the calculation of initial pixel-wise homography matrixes, which are refined with an online optimization scheme. Finally, with the estimated pixel-specific homography parameters, pixel correspondences between candidate images can be easily computed for registration. Compared with state-of-the-art image registration algorithms, the proposed <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">DPH-Net</i> has the highest performance of 0.912 EPE and 0.977 SSIM, demonstrating the effectiveness of adding depth information and estimating pixel-wise homography into the image registration process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.