Abstract
We present a novel dehazing framework for real-world images that contain both hazy and low-light areas. Dehazing and low-light enhancements are unified by using an illumination map that is estimated using a proposed convolutional neural network. The illumination map is then used as a component for three different tasks: atmospheric light estimation, transmission map estimation, and low-light enhancement, thereby enabling the solving of interrelated low-level vision problems simultaneously. To train the neural network to perform both dehazing and low-light enhancement, we synthesize hazy and low-light images from normal images. Experimental results demonstrate that the proposed method quantitatively and qualitatively outperforms state-of-the-art algorithms in real-world image dehazing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.