Abstract

The arthropod central complex and vertebrate basal ganglia derive from embryonic basal forebrain lineages that are specified by an evolutionarily conserved genetic program leading to interconnected neuropils and nuclei that populate the midline of the forebrain-midbrain boundary region. In the substructures of both the central complex and basal ganglia, network connectivity and neuronal activity mediate control mechanisms in which inhibitory (GABAergic) and modulatory (dopaminergic) circuits facilitate the regulation and release of adaptive behaviors. Both basal ganglia and central complex dysfunction result in behavioral defects including motor abnormalities, impaired memory formation, attention deficits, affective disorders, and sleep disturbances. The observed multitude of similarities suggests deep homology of arthropod central complex and vertebrate basal ganglia circuitries underlying the selection and maintenance of behavioral actions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.