Abstract

P-type nitrogen-doped ZnSe grown on n+-GaAs by molecular beam epitaxy has been studied by deep-level transient spectroscopy (DLTS) and double correlation DLTS. To achieve p-type doping of ZnSe, we employed an active nitrogen beam produced by a free-radical plasma source. Four hole traps—with activation energies of 0.22, 0.51, 0.63, and 0.70 eV—were detected by DLTS. Two of these—those at 0.51 and 0.63 eV—have never been observed before in ZnSe. They are probably introduced to the material by nitrogen doping. The properties of the other two traps—at 0.22 and 0.70 eV—support the hypothesis that both of them are associated with native defects, in agreement with earlier reports. To our knowledge this is the first report about direct experimental investigation of deep states in p-type ZnSe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call