Abstract

We investigated the hole injection mechanism in InGaN/GaN blue light-emitting diodes by growing monolithic dual-wavelength multiple-quantum-wells and measuring the electroluminescence spectra at different current densities under room temperature. By analyzing the spectral competition from quantum wells at different vertical locations, the hole injection depth was quantitatively measured. During the epitaxial growth, large size V-shape pits with 200–330 nm diameter were intentionally formed in the active region by controlling the growth condition. It was found that such defect has a significant influence on the hole injection depth. With large V-shape pits and reduced quantum barrier thickness, the hole can be injected beyond 8 pairs of quantum well/quantum barrier. And less “droop” effect at large current density were observed. A carrier transport model with the presence of large V-shape pits is established.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.