Abstract

ABSTRACT In current clinical trial development, historical information is receiving more attention as it provides utility beyond sample size calculation. Meta-analytic-predictive (MAP) priors and robust MAP priors have been proposed for prospectively borrowing historical data on a single endpoint. To simultaneously synthesize control information from multiple endpoints in confirmatory clinical trials, we propose to approximate posterior probabilities from a Bayesian hierarchical model and estimate critical values by deep learning to construct pre-specified strategies for hypothesis testing. This feature is important to ensure study integrity by establishing prospective decision functions before the trial conduct. Simulations are performed to show that our method properly controls family-wise error rate and preserves power as compared with a typical practice of choosing constant critical values given a subset of null space. Satisfactory performance under prior-data conflict is also demonstrated. We further illustrate our method using a case study in Immunology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.