Abstract
AbstractThe mid Miocene represents an important target for paleoclimatic study because the atmospheric CO2 concentration ranged from near modern values to ∼800 ppm, while a large, dynamic Antarctic ice sheet was likely to have been present throughout much of this interval. In this special issue, Modestou et al. (2020) (doi.org/10.1029/2020PA003927) reconstruct deep ocean warmth based on the clumped isotopic composition of benthic foraminifera, a technique that allows the ice volume and thermal components of the benthic oxygen isotope stack to be separated. These data reveal a very warm deep ocean while simultaneously suggesting that continental ice volume may, at times, have been greater than today. Here, I review these results in the context of recent developments in geochemical proxies and ice sheet modeling, and explore how the presence of a large Miocene ice sheet could be reconciled with CO2 at least as high as present. More broadly, I argue that many of the 'paradoxes' that pepper the paleoclimate literature result as much from our imperfect understanding of the proxies, as from our understanding of the climate system. Robust proxies with a well‐understood mechanistic basis, as employed by Modestou et al. (2020), as well as advances in model‐data comparability usher in a new era of palaeoclimate research; an exciting future of untangling Earth's myriad past climate states awaits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.