Abstract
Graph-based multi-view clustering methods have achieved impressive success by exploring a complemental or independent graph embedding with low-dimension among multiple views. The majority of them, however, are shallow models with limited ability to learn the nonlinear information in multi-view data. To this end, we propose a novel deep graph reconstruction (DGR) framework for multi-view clustering, which contains three modules. Specifically, a Multi-graph Fusion Module (MFM) is employed to obtain the consensus graph. Then node representation is learned by the Graph Embedding Network (GEN). To assign clusters directly, the Clustering Assignment Module (CAM) is devised to obtain the final low-dimensional graph embedding, which can serve as the indicator matrix. In addition, a simple and powerful loss function is designed in the proposed DGR. Extensive experiments on seven real-world datasets have been conducted to verify the superior clustering performance and efficiency of DGR compared with the state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.