Abstract

A recent trend of automatic modulation classification is to automatically learn high-level abstraction of signals, instead of manually designing features for further classification. In this paper, we propose a new deep geometric convolutional network (DGCN) to hierarchically extract discriminative features from Wigner–Ville distribution map of signals. A group of geometric filters are constructed from a least square support vector machine, to capture the linear singularity existed in maps. The filters are cascaded to construct a deep network for extracting discriminative features and classifying signals with different modulation types. Some experiments are taken to investigate the performance of DGCN, and the results show that it can achieve high accuracy in classifying 15 types of modulation signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.