Abstract
We sample the genetic programming tree search space and show it is smooth, since many mutations on many test cases have little or no fitness impact. We generate uniformly at random high-order polynomials composed of 12,500 and 750,000 additions and multiplications and follow the impact of small changes to them. From information theory, 32 bit floating point arithmetic is dissipative, and even with 1,501 test cases, deep mutations seldom have any impact on fitness. Absolute difference between parent and child evaluation can grow as well as fall further from the code change location, but the number of disrupted fitness tests falls monotonically. In many cases, deeply nested expressions are robust to crossover syntax changes, bugs, errors, run time glitches, perturbations, and so on, because their disruption falls to zero, and so it fails to propagate beyond the program.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Evolutionary Learning and Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.