Abstract

BackgroundAn increasing number of studies demonstrate that genetic differentiation and speciation in the sea occur over much smaller spatial scales than previously appreciated given the wide distribution range of many morphologically defined coral reef invertebrate species and the presumed dispersal-enhancing qualities of ocean currents. However, knowledge about the processes that lead to population divergence and speciation is often lacking despite being essential for the understanding, conservation, and management of marine biodiversity. Sponges, a highly diverse, ecologically and economically important reef-invertebrate taxon, exhibit spatial trends in the Indo-West Pacific that are not universally reflected in other marine phyla. So far, however, processes generating those unexpected patterns are not understood.ResultsWe unraveled the phylogeographic structure of the widespread Indo-Pacific coral reef sponge Leucetta chagosensis across its known geographic range using two nuclear markers: the rDNA internal transcribed spacers (ITS 1&2) and a fragment of the 28S gene, as well as the second intron of the ATP synthetase beta subunit-gene (ATPSb-iII). This enabled the detection of several deeply divergent clades congruent over both loci, one containing specimens from the Indian Ocean (Red Sea and Maldives), another one from the Philippines, and two other large and substructured NW Pacific and SW Pacific clades with an area of overlap in the Great Barrier Reef/Coral Sea. Reciprocally monophyletic populations were observed from the Philippines, Red Sea, Maldives, Japan, Samoa, and Polynesia, demonstrating long-standing isolation. Populations along the South Equatorial Current in the south-western Pacific showed isolation-by-distance effects. Overall, the results pointed towards stepping-stone dispersal with some putative long-distance exchange, consistent with expectations from low dispersal capabilities.ConclusionWe argue that both founder and vicariance events during the late Pliocene and Pleistocene were responsible to varying degrees for generating the deep phylogeographic structure. This structure was perpetuated largely as a result of the life history of L. chagosensis, resulting in high levels of regional isolation. Reciprocally monophyletic populations constitute putative sibling (cryptic) species, while population para- and polyphyly may indicate incipient speciation processes. The genetic diversity and biodiversity of tropical Indo-Pacific sponges appears to be substantially underestimated since the high level of genetic divergence is not necessarily manifested at the morphological level.

Highlights

  • An increasing number of studies demonstrate that genetic differentiation and speciation in the sea occur over much smaller spatial scales than previously appreciated given the wide distribution range of many morphologically defined coral reef invertebrate species and the presumed dispersalenhancing qualities of ocean currents

  • Two main processes have been invoked as responsible for allopatric speciation in the tropical Indo-West Pacific (IWP): vicariance, where a species' previously coherent geographic range has become fragmented following the formation of a barrier to dispersal; or speciation through a founder effect, where a new population is established by a small number of individuals, often by long-distance dispersal, and subsequent restricted gene flow has led to speciation

  • Results rDNA internal transcribed spacers (ITS), partial 28S sequences Our data set of 176 individuals [see Additional file 1] includes samples covering the known geographic extent of L. chagosensis (Fig. 1)

Read more

Summary

Introduction

An increasing number of studies demonstrate that genetic differentiation and speciation in the sea occur over much smaller spatial scales than previously appreciated given the wide distribution range of many morphologically defined coral reef invertebrate species and the presumed dispersalenhancing qualities of ocean currents. Knowledge about the processes that generate and maintain marine biodiversity, and the evolutionary relationships and genetic variation of regional populations, along with assessments of the amount of demographic connection between these populations, are essential for understanding and effectively conserving and managing marine resources [1] such as the highly diverse coral reefs [2] This information is currently lacking in the Indo-Pacific for most coral reef organisms other than fish and corals [3], which is surprising considering their diversity and the significant ecological and economic roles played by this ecosystem [4]. Both processes are probably the extremes of a continuum rather than being mutually exclusive [10], but the degree of their interplay remains poorly understood

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.