Abstract
Extracting face images at a distance, in the crowd, or with a lower resolution infrared camera leads to a poorquality face image that is barely distinguishable. In this work, we present a Deep Convolutional Generative Adversarial Networks (DCGAN) for infrared face image enhancement. The proposed algorithm is used to build a super-resolution face image from its lower resolution counterpart. The resulting images are evaluated in term of qualitative and quantitative metrics on infrared face datasets (NIR and LWIR). The proposed algorithm performs well and preserves important details of the face. The analysis of the resulting images show that the proposed framework is promising and can help improve the performance of image super-resolution generation and enhancement in the infrared spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.