Abstract

Accurate segmentation of pathological regions in brain magnetic resonance images (MRI) is essential for the diagnosis and treatment of brain tumors. Multi-modality MRIs, which offer diverse feature information, are commonly utilized in brain tumor image segmentation. Deep neural networks have become prevalent in this field; however, many approaches simply concatenate different modalities and input them directly into the neural network for segmentation, disregarding the unique characteristics and complementarity of each modality. In this study, we propose a brain tumor image segmentation method that leverages deep residual learning with multi-modality image feature fusion. Our approach involves extracting and fusing distinct and complementary features from various modalities, fully exploiting the multi-modality information within a deep convolutional neural network to enhance the performance of brain tumor image segmentation. We evaluate the effectiveness of our proposed method using the BraTS2021 dataset and demonstrate that deep residual learning with multi-modality image feature fusion significantly improves segmentation accuracy. Our method achieves competitive segmentation results, with Dice values of 83.3, 89.07, and 91.44 for enhanced tumor, tumor core, and whole tumor, respectively. These findings highlight the potential of our method in improving brain tumor diagnosis and treatment through accurate segmentation of pathological regions in brain MRIs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.