Abstract

Most of the existing spatial-spectral-based hyperspectral image classification (HSIC) methods mainly extract the spatial-spectral information by combining the pixels in a small neighborhood or aggregating the statistical and morphological characteristics. However, those strategies can only generate shallow appearance features with limited representative ability for classes with high interclass similarity and spatial diversity and therefore reduce the classification accuracy. To this end, we present a novel HSIC framework, named deep multiscale spatial-spectral feature extraction algorithm, which focuses on learning effective discriminant features for HSIC. First, the well pretrained deep fully convolutional network based on VGG-verydeep-16 is introduced to excavate the potential deep multiscale spatial structural information in the proposed hyperspectral imaging framework. Then, the spectral feature and the deep multiscale spatial feature are fused by adopting the weighted fusion method. Finally, the fusion feature is put into a generic classifier to obtain the pixelwise classification. Compared with the existing spectral-spatial-based classification techniques, the proposed method provides the state-of-the-art performance and is much more effective, especially for images with high nonlinear distribution and spatial diversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.