Abstract

The refractive index heterogeneity severely limits the imaging performance of optical microscopy in deep tissue. Adaptive optics (AO) is currently widely used to recover the diffraction-limited resolution at depth. However, there is a tradeoff between the time resolution and spatial resolution, which makes it difficult to achieve the real-time imaging in deep tissue. This is partially because that the effective correction area of conventional AO is limited with a single guide star (GS). Therefore, the using of multiple guide stars is a potential solution to increase the corrected field of view. Here we report an automatic selection algorithm of multiple guide stars and demonstrate the feasibility by implementing this method in the system of conjugate adaptive optical correction with multiple GSs. The simulation results indicate that compared with the case of the single guide star, high-resolution imaging can be obtained in most imaging areas with automatically selected 9 guide stars. Further, we can obtain optimally numbers and positions of the guide stars automatically and expect larger area aberrations. Therefore, this method has the great potential in in vivo deep tissue imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.