Abstract

In the digital world, automatic component classification is becoming increasingly essential for industrial and logistics applications. The ability to automatically classify various machine parts, such as bolts, nuts, locating pins, bearings, plugs, springs, and washers; using computer vision is challenging for image-based object recognition and classification. Despite varying shapes and classes, components are difficult to distinguish when they appear identical in several ways–particularly in images. This paper proposes identifying machine parts by a deep feature fusion classification model (DFFCM)-variance based designed through the convolutional neural network (CNN), by extracting features and forwarding them to an AdaBoost classifier. DFFCM-v extracts multilayered features from input images, including precise information from image edges, and processes them based on variance. The resulting deep vectors with higher variance are fused using weighted feature fusion to differentiate similar images and used as input to the ensemble AdaBoost classifier for classification. The proposed DFFCM-variance approach achieves the highest accuracy of 99.52% with 341,799 trainable parameters compared with the existing CNN and one-shot learning models, demonstrating its effectiveness in distinguishing similar images of machine components and accurately classifying them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call